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BENDING AND SHEAR STRESSES DEVELOPED BY THE INSTANTANEOUS ARREST OF 
THE ROOT OF A MOVING CANTILEVER BEAM 

By ELBHIDGE Z. STOWELL, EDWABD B. SCHWABTZ, and JOHX C. HOUBOLT 

SUMMARY 

A theoretical and experimental investigation has been made 
of the behavior of a cantilever beam in transverse motion when 
•its root is suddenly brought to rest. Equations are given for 
determining the stresses, the deflections, and the accelerations 
that arise in the beam as a result of the impact. The theoretical 
equations, which have been confirmed experimentally, reveal 
that, at a given percentage of the distance from root to tip, the 
bending stresses for a particular mode are independent of the 
length of the beam whereas the shear stresses vary inversely 
with the length. 

INTRODUCTION 

When an airplane lands, the vertical component of the 
velocity is rapidly reduced to zero. In the absence of a 
thorough analysis of the stresses that arise from such shocks, 
it is customary for engineers to assume that the landing 
loads are static and independent of the elastic properties of 
the structure. As an initial step in the study of elastic 
structures under shock loads, an investigation has been made 
to determine the effect on a simple structure of the sudden 
arrest of its motion and the effect of the geometry of the 
structure on the stresses that result. The particular case 
treated in this report covers the basic problem of the in- 
stantaneous arrest of the root of a moving cantilever beam. 
The solution of this problem gives the energy consumed in 
exciting the different modes of vibration and the stresses, 
deflections, and accelerations that result throughout the 
beam. 

This investigation is based on the usual engineering 
beam theory in which the deflections are considered to be the 
result of bending alone and shear deflections are neglected. 
The theory, as applied to ordinary beams, gives reasonably 
good results as long as the distance between inflection 
points is greater than a few times the depth of the beam. 
When this theory for beam action is used in vibration 
problems, such as the problem in the present paper, the 
results are satisfactory for those modes of vibration for 
which the nodes are not too close together. This report 
summarizes the results of a theoretical solution, given in 
the appendix, and presents an experimental verification 
of these results. 

SYMBOLS 
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X 

modulus of elasticity 
weight density of material 
coefficient   of equivalent viscous   damping   of 

material 

velocity of sound in material (•* — 

9 
L 
I 

x 

V 

P 

n 

acceleration of gravity 
length of beam 
moment of inertia of cross section of beam about 

neutral axis 
cross-sectional area of beam 

radius of gyration of cross section of beam ( -/-j J 

coordinate along beam measured from root 
distance from neutral axis of beam to any fiber 
time, zero at impact 

v 
w(x, t) 
wn(x, t) 

a(x, f) 
am{x, t) 

<r(x, y, t) 

<rjp, V, t) 

T(X, t) 

Tjx, t) 

A. 

operator (D 
integers 1, 2, 3,  etc.! designating a particular 

mode of vibration 
nth positive root 1+cosfl cosh 0=0 
undamped natural angular frequency of nth mode, 

radians per second (pc -£ J 

damped natural angular frequency of nth mode, 

radians  per  second     "Jl-rS-    (When 

X'w * 
7w>l,   the   "frequency"   is   defined   by 

'=w»Vi3^-1v 
velocity of beam prior to impact 
deflection of beam at station x and time t 
deflection of beam at station x and time t for 

nth mode of vibration 
acceleration of beam at station x and time t 
acceleration of beam at station x and time t for 

nth mode of vibration 
bending stress in beam at station x, distance 

from neutral axis y, and time t 
bending stress in beam at station x, distance 

from neutral axis y, and time t for nth mode of 
vibration 

average shear stress over cross section of beam at 
station x and time t 

average shear stress over cross section of beam 
at  station x and  time  t for nth  mode  of 
vibration 

bending-stress coefficient 
shear-stress coefficient 
deflection coefficient 
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RESULTS AND CONCLUSIONS 

THEORETICAL 

When a cantilever beam under uniform translation in 
a direction perpendicular to its length, has it root instanta- 
neously brought to rest, there is excited a theoretically infi- 
nite number of mode9 of vibration. With each successive 
mode, damping has an increasing influence upon the fre- 
quencies and amplitudes of vibration and, for sufficiently high 
modes, even changes the type of motion from oscillatory to 
nonoscillatory motion. In the lower modes,however, damping 
has little effect, and only terms of the first order in damp- 
ing need to be included in the equations. Only the equa- 
tions applicable to the lower modes, which alone are of 
importance in any practical case, are presented in this section 
of the paper. For a more complete treatment of damping, 
see the appendix. 

The angular frequencies (2ir times the frequencies in cps) 
are given by the equation 

(1) 

where 0„ has the following values for successive modes of 
vibration: 

0I=1.875104 
0s=4.694O98 
08=7.854757 
0,= 10.995541 

05 = 14.137168 
08 = 17.278759 

0a«i(2n-l)T, n>6 

The energy that the beam possesses before impact is 
consumed in exciting the various modes of vibration and 
is distributed among the modes as follows: 

Mode, n Percentage of 
energy 

1 81.3 
2 18.8 
3 7.4 
4 3.2 
S L9 
6 -    1.8 
7 tO oo 6.1 

This distribution of energy among the different modes of 
vibration is presented graphically in figure 1. 
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FIGUEB 1.—Distribution of energy among the modes of vibration. 

All stresses, deflections, and accelerations are damped 
sinusoidal functions of time and vary along the length of 
the beam. The bending stress cr%(xty,f) and the average 
shear stress Tn(x, t), associated with the nth modo of vibra- 
tion, are given by the equations 

2E 

H(x,y,t)=Axj^-Ee        sin co„f 
c p 

rn{x,t) = Bn-lEe 
u: 

sin o>.l 

(2) 

(3) 

The variation of the dimensionless coefficients AM rind 7?» 
with xjL is given for n=l, 2, and 3 in figures 2 and 3.   The 
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FIGURE 2.—Variation of banding-stress ooefQcient A, wltb if L. 
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highest values of 4» and Bn, and hence the highest stresses, 
occur at the root of the beam. These values, for the first, 
six modes, are 

Mode, n A, at root B» at root 

1 1.60« 1148 
2 .see 4.149 % .500 3. Ml 
4 .304 4.00 
5 .283 4.00 
S .231 4.00 

The foregoing values of An and Bn at the root are presented 
graphically in figure 4. 

The maximum values with respect to time of <rn(x, y, t) 
and T*(X, t) associated with the nth mode of vibration, when 
the effects of damping are neglected, are 
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x/L 

FIGUKE 3.—Variation of shear-stress coefficient B» with x[L. 

<rn{x,y)=An^E (4) 

(5) 

The deflections wn(x, t) for the nth mode of vibration are 
given by the equation 

wn (x, t) = C*-—e sin wj 
c  p 

(6) 

The accelerations an(x, t) for the nth mode, when damping 
is sufficiently small, are given by 

an(x, 0 = -w„2«?»(z, t) (7) 

The variation of the dimensionless coefficient C» with x/L is 
given for n=\, 2, and 3 in figure 5. 

The equations (4) to (7) for stress, deflection, and accelera- 
tion give the values associated with the nth mode of vibra- 
tion. Since all modes of vibration occur simultaneously, the 
net results are the superposition of the effects of all modes. 
This superposition gives the following equations: 
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FtaruE'4.—Values of bending-stress coefficient An and shear-stress coefficient -B« at root. 
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For bending stress, 

/       Xa"'{ 
<x{x,y,f)=~'lE\Ale  

2S sin ^f 

-\-A3e        sin <>>it+ ...) (8) 

FOT average shear stress, 

XMI» 

e        sin oijl 

Xui> 

+52e sm wjf + • • • I (9) 

For deflection, 

w(x, t)' 
D Iß /     -halt 

=-— f Cxe   *£ sin a»!* 
c P  \ 

+ <?ae  as'sin w2(+ . . . J 

For acceleration, when damping is sufficiently small, 

a(a:, £)=- — ( CWe 2B sin w^ 

+C2w2
1!e   2E < srn «2^+ . • •) 

(10) 

(11) 

The equation for bending stress-.(equation (4)) reveals 
that, at a given percentage of the distance from root to tip, 
the bending stress for a particular mode is independent of 
the length of the beam and depends only on the velocity 
before impact. The equation for shear stress (equation (5)) 
reveals that the shear stresses at any station vary inversely 
with the length of the beam. These results are contraiy to 
those that might be expected on the basis of experience with 
the static behavior of structures. For this reason an ex- 
perimental investigation was made. 

EXPERIMENTAL 

A circular steel tube of 1-inch outside diameter and 0.028- 
inch wall thickness was mounted symmetrically on the end 
of a pendulum to form a pair of cantilever beams. (See 
fig. 6.) The pendulum was permitted to start its swing from 
a predetermined position and was suddenly brought to rest 
at the bottom of its swing against an electromagnet used to 
prevent rebound. The effect of length was studied by 
reducing- the length of the tube in successive tests. The 
bending and shear strains were measured by electrical strain 
gages that were mounted on the tube as shown in figure 7. 
Each pair of gages was incorporated into a Wheatstone 
bridge circuit as shown diagrammatically in figure 8. The 
outputs of the bridge systems were fed through a strain-gage 

Fracas o.—rcndulum assembly used In impact tost. 

i^n 

a'recfion of motion   
'BencfiTg gages 

FIGURE 7.—Location of strain »ages on tube 

amplifier into a multichannel oscillograph that recorded tho 
strains on moving photographic paper. Tho amplitude of 
the components of strain due to tho modes of higher fre- 
quency was reduced, however, because of the response charac- 
teristics of the oscillograph. The frequency-response curve 
for the oscillograph used is given in figure 0. 

Typical records for tubes of two lengths arc shown in 
figure 10.   Inspection of the record for the cantilever beam 



THE INSTANTANEOUS ARREST OF THE   ROOT OF A MOVING CANTILEVER BEAM 585 

.^Diametrically opposite 
gages on tube 

Output 

FIQUEE 8.—Bridge circuit used In tests. 
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FIQCBE 9.—Frequency response of strain-gage amplifier and Miller (3000~) oscillograph; 
0.69 critical damping. 

26% inches long shows the superposition of the second and 
third modes upon the first mode. The record shows that, in 
the case of the bending strain, the contribution of the second 
mode is small; whereas, in the case of the shear strain, the 
contribution of the second mode is large. This observation 
confirms qualitatively the theoretical results shown in figure 4. 
The same effect is not shown, however, in the record for 
the cantilever beam 11% inches long because of the combined 
action of damping and reduced response of the oscillograph 
to the higher frequencies associated with this short length of 
tube. 

The bending stresses computed by use of equation (8), in 
which only the first three modes are used, are given by the 
solid-line curve of figure 11 for the cantilever beam 26% inches 
long. Comparison of this curve with the record obtained 
during the first K cycle of the first mode (see fig. 10) shows 
good agreement as regards the wave shape. 

Because of the damping present in the tube and the 
response characteristics of the oscillograph, the only com- 
ponent of vibration that could be satisfactorily recorded for 
all lengths of cantilever tube was the fundamental or first 
mode. The quantitative results of the tests consequently 
were based upon this mode of vibration. This procedure is 
sound because the effects of the various harmonics are 
independent of one another. In the analysis of the results, 
the data had to be corrected for the influence of the magnet. 
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Floras 10.—Portions of typical records obtained for two different lengths of tube 
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FiauBi 11.—Theoretical wave form for extreme-fiber bending stress at root obtained from 
the first three modes of vibration. Steel tube, 1-taeh outside diameter; wall thickness, 
0.028 Inch; length, 2SJi Inches. 



586 REPORT NO. 828—NATIONAL ADVISORY COMMITTEE TOR AERONAUTICS 

0 o o o O 
a 

'eft arms 
4 

0       Average of right and y 

w 

i 

\ 

\ 
V 

A 
\ 

^, 
_o 

I    r> 

W 
O 10 BO 30 40 50 

Length,.in.' 

(a) Bending, 
(b) Shear. 

FIOURS 12.—Comparison of experimentally and theoretically determined maximum stresses 
of fundamental mode at root of cantilever tube.  Impact velocity, 2.8 feet per second. 

The observed frequencies are compared with the frequen- 
cies computed from equation. (1) for the first modo in tho 
following table: 

Length (In.) 

Frequency 

Observed 
Ccps) 

Computed 
Ccps) 

4SM 
36« 
26H 

17.6 
27.» 
62.1 

131 
272 

17. £ 
26.2 
63.2 

137 
277 

The experimental values of extreme-fiber bonding stresses 
and the shear stresses at the root, for the fundamental mode, 
are plotted in figure 12. In figure 12 are also shown ^he 
corresponding theoretical curves of equation (4) for bending 
and equation (5) for shear with n taken as 1. It is ob- 
served that the experimental points follow the trend of and 
lie close to the theoretical curves. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., September 27 .1944- 



APPENDIX 

THEORETICAL DEEIVATION 

General analysis.—Consider a beam of uniform cross sec- 
tion in equilibrium. If a portion of the beam is suddenly 
disturbed, as by a shock, in a direction perpendicular to its 
length, the beam is set into damped bending oscillations. 
The equation of motion for these bending oscillations is given 
by the differential equation (reference 1) 

(Al) 

The damping term Xp2 §rrr, is derived on the assumption 

that the longitudinal damping force per unit area at any 
point on the cross section of the beam is proportional to the 
rate of change of longitudinal strain at that point. (See 
reference 2.) This type of force is analogous to ordinary 
viscous drag, in which the tangential force per unit area is 
proportional to the rate of change of shear strain.   With the 

Eq 
use of the notation c2=—> equation (Al) can be written 

ö^w , X  &w ,   1   &w 
=0 (A2) 

In accordance -with the Heaviside operational methods 
(reference 3), equation (A2) may be reduced to an ordinary 

differential equation of the fourth order by writing P~^p 

thus, 

(A3) (>+P|)S+£»=O E) dx* 

The general solution of equation (A3) is 

w=P cosh 8 j+Q sinh 8 j+R sin 8 jr+S cos 8 J  (A4) 

where 

9=L   j       i? 
_L_       X 

+PE 

The coefficients P, Q, R, and S are to be determined from 
the boundary conditions. The case under consideration is 
that of a cantilever moving with uniform velocity v and 
having its base brought instantaneously to rest. The 
boundary conditions for this case are 

a ID-r* iw)> .Q=V—V1 

The velocity of the root as given by the first boundary con- 
dition is represented graphically in figure 13(a). The rules 
of the Heaviside calculus, however, have been devised for 
a disturbance, called the unit function 1, shown in figure 
13(b). By the principle of superposition, the velocity func- 
tion shown in figure 13(a) may be considered as a super- 
position of those shown in figures 13(c) and 13(d). The 
velocity therefore consists of a constant velocity v (fig. 13(c)) 
added to the solution of the problem obtained by the Heavi- 
side expansion theorem for the disturbance shown in figure 
13(d).   On the basis of this procedure, the first boundary 

« 

(dw) 
\dt/x*o 

v-vl 
0 t— 

TIODEB13.—Graphic representation of various velocity Junctions. 
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condition may be written 

(M)x.r
v <*>-—«* 

With the application of the boundary conditions to equation (A4), the operational form of the solution for the velocity 
(that induced by the disturbance) is found to be 

^=2(l+coThJgcosg)[(1+C0S B C09h &) (COsh 9i+«*9i) 

+sin 0 sinh 0 (cosh 0 j—cos 0 j-J+(sinh 0 cos 0 +cosh 0 sin 0) (sin 0 -£—sinh $ ^j (A5) 

Interpretation of this operational expression and addition of the constant velocity v gives for the total velocity 

IC     2Ä 

Xw» 
2^ 

where 

cos aa't •    -••-•sin wn't 
/i.   XW 

(A6) 

i* 

'=»»•^1 

nth positive root of 1+cos 0 cosh 0=0 
i 

- undamped natural angular frequency of nth mode, radians/sec 

tjj&   damped natural angular frequency of nth. mode, radians/sec 

(x x\ / x x\ 
cosh 0»T

—cos Ö»T )~(cosh0asin0,,+sinh0ncos0,){ sinh0„y—sin0nT ) 
r V"" 1>)~ '      0» (cosh 0„ sin 0„—sinh~0« cos 0«) 

Integration of equation (A6) with respect to the time with 
the condition (w)«-0=0 gives for the deflection 

w(x, 0=2» S 
»-1 

X«.», 
.    2E ' sin«»'* 2     (A7) 

4£2 

where 

2F 
ö.=- (»•!) 

0,s 

The contribution of the nth mode to the deflection is 

.     .    v U n 

V ,    XW 
e ~ss* sinwa'f 1     (A8) 

Xa>BV When ^>1, equation (A8) may be put in the form 

1 2B ( 
sinh ua't 1     (A9) 

where now 

Xw» The form indicated by equation (A8), where „p <^1, is 

characteristic of the lower modes and represents damped 
oscillatory motion.    The form indicated by equation (A9), - 

where2^>1 (dampinggreater than critical), is characteristic 

of the higher modes and represents subsidence motion. 
From equation (A6) for velocity and equation (A7) for 

deflection, the complete behavior of the cantilever may be 
determined. The quantities of interest are the bending 
stresses, the shear stresses, and to some extent the accelera- 
tions. When damping is present, the equations representing 
the contribution of the nth mode to these quantities may be 
given in the two forms indicated by equations (A8) and (A9). 
In subsequent equations, however, only tho form indicated 
by equation (A8) is given because it is characteristic of the 
modes that are of practical importance. 

Bending stresses.—The bending stresses a(x,y,t) at any 
fiber distance y from the neutral axis are 

ff (x, y, t)=Ey -^ 

-E^y-BA \   " L   xW 
_XM.« 

6        sin w» 11 



where 

A«=2 
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(X x\ f X IE \ 
cosh 0„y+cos 0»T )—(coshö»sinfl»+sinhöIlcosfl1,) (sinh 0«j+sin 0*T ) 
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0„ (cosh 0» sin 0„—sinh 0„ cos 0») 

The bending stress due to only the nth mode is 

• v y <rn{xiy,f)=E-£A, 
1 -^t 

V' "4S4 

sin co_'* 2 

Shear stresses,—The average shear stress over the cross section T (X, t) is 

•*5£S* V^ X»a>. 
4E2 

e sin OJ,'£ 2 

where 

Ba=2 

/ 3? 3j\ f X x\ 
sin 0» sinh 0»f sinh 0«y—sm0,yl—(cosh 0, sin 0,-|-sinh0« cos 0,) (cosh 0, y+cos 0«r ) 

cosh 0. sin 0»—sinh 0- cos 0. 

The average shear stress due to only the nth mode is 

1 wt 
r«(», t)=E-c^BK   ,   \,   96   *"  sin«/* I 

V       4£2 

Accelerations.—From equation (A6), with the aid of the relation 

pF(t) l=F(0)pl+F'(t) 1 

the acceleration anywhere on the beam is found to be 
.(,    \W\ C Xw«   L    XW 

"»V      2£V   -SSFi    .       ,  ,   E'y l    4E* 

V1_4^ 
'*+ 

2£2 

COS «-'£ 

With the aid of the orthogonal properties of the functions F ( 0, y j it is possible to show that the quantity 2S-f(^ Tjl 

X X rc /       %\ 
reduces to zero  when 0<jgl.   At y=0, the quantity 2^;F (0«"f) equals zero, and only the term — vpl remains. 

This term indicates that at t=0 an infinite acceleration of zero duration exists at the root. 
The acceleration due to only the nth mode is 

r 1} ' 2E% 

/TITO 
Xa.' 

sin (äK t-{ — 

XW 
~4ES 

X2, «» 
cos w»'i 

2.E'1 

Comparison with the expression for 10,(1,0 (equation (A8)) 
shows that the acceleration for each mode is out of phase 
with the deflection. When damping is sufficiently small, 
however, the relation between the acceleration and the 
deflection reduces to the well-known result for undamped 
vibration 

an(x, t) =—auhvK(x, t) 

REFERENCES 

1. Den Hartog, J. P.: Mechanical Vibrations.   Second ed., McGraw- 
Hill Book Co., Inc., 1940, p. 180. 

2. Honda, KötarÖ, and Eonno, Seibei:    On the Determination of the 
Coefficient of Normal Viscosity of Metals.   Phil. Mag., ser. 6, 
vol. 42, no. 247, July 1921, pp. 115-123. 

3. Carson, John  R.:    Electric Circuit Theory and the Operational 
Calculus.    McGraw-Hill Book Co., Inc., 1926. 



f 
TITLE: Bending and Shear Stresses Developed by the Instantaneous Arrest of the Root of a 

Mnvlng Cantilever Beam 
AUTHORS Slowell, E. Z,, Schwarte, E. B.; Houbolt, I. C. 
ORIGINATING AGENCY: Langley Memorial Aeronautical Lab., Langley Field, Va. 
PUBLISHED «Y: National Advisory Committee tor Aeronautics, Washington, D. C. 

1945 Unclass. U.S. EnglSh 7T 

ATI- ai74S 

photos, diagrfl, graphs 

•nnri 

R-B28 

(Same) 

ABSTRACT; 

A theoretical and experimental investigation was made of the behavior of a cantilever 
beam In transverse motion when its root is suddenly brought to rest.   Equations are 
given for determining the stresses, the deflections, and the accelerations that arise 
In the beam as a result of the Impact.   The theoretical equations, which have been 
confirmed experimentally, reveal that at a given percentage of the distance from 
root to tip the bending stresses for a particular mode are Independent of the length 
of the beam, whereas the shear stresses vary inversely with the length. 

DISTRIBUTION:   Request copies of this report only from Publishing Agency 
DIVISION: Stress Analysis and Structures (7) / 
SECTION: Structural Theory and Analysis       ' 

Methods (2) 

ATI SHEET NO.:      R-7-2-49   

SUBJECT HEADINGS: Loads, Landing - Dynamic - 
Calculation (5601S. 15); Beams - Stress analysis 
(15982,75); Beams, Cantilever (15985.2) 

All  TECHNICAL   INOEX 

-I 



TITLE: Bending and Shear Stresses Developed by the Instantaneous Arrest of the Root 
of a Moving Cantilever Beam 

ATI-7939 
•rmtoM 

fNone) 
AUTHOR(S)         :   Slowed, E. Z.\  Schwartz. E. B.;   and olhers 
ORIG. AGENCY :   Langle; Memorial Aeronautical Laboratory, Langley Field, Va. 
PUBLISHED BY     :   Natlojuu    Advisory Commlltee for Aeronautics, Washington, D. C. 

One. A«MCT NO. 
ARR-L4127 

nrtiMw AOCMCY tto. 
(Same) 

i An 
Nov '41 

DOC OAU. 
Unclass. U.S. 

IAMOUAM 
English 

FAM* 

3rt 
lUUfTtAItOMl 
uhoto. tablr..., (iiajtrs. graphs 

Sludy is made of canlllever beam In lransverse motion when Its root Is suddenly brought to rest. 
The resulting damped bending oscltlaltons are given In differential equal Ions determining stresses 
deflections, ind accelerations.   At given distance from rool to tip. hendlng stresses for a particu- 
lar mode are Independent of beam length, and shear-stresses vary Inversely with lhe length.   Ex- 
perimental resulls follow the trend of lheoretlcal curves and He rinse to them.   Appendix gives 
mathematical derlvallon of theory, graphs, etc. 

DISTRIBUTION:    An requgsL«; for rnples must bo addrrssfrf tn-  Publishing AgPnry 
DIVISION: Slructures 0)  / 
SECTION: Theory and Analysis Methods (2)   •" 

ATI SHEET NO.;  
Central Air Document» Ofilc* AI 

Wright - Pott* n*n Air P*r** DOM.  Ooyton, 3MB 

SUBJECT HEADINGS: 
Beams - Stress analysis (15982.75) 

"~Yi 


